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We consider random energy landscapes constructed from d-dimensional lattices or trees. The distribution of
the number of local minima in such landscapes follows a large-deviation principle and we derive the associated
law exactly for dimension 1. Also of interest is the probability of the maximum possible number of minima;
this probability scales exponentially with the number of sites. We calculate analytically the corresponding
exponent for the Cayley tree and the two-leg ladder; for two- to five-dimensional hypercubic lattices, we
compute the exponent numerically and compare to the Cayley tree case.
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INTRODUCTION

For many materials that are glassy �1� local minima of the
energy �or of the free energy� trap the system for long times,
leading to subtle equilibrium and out-of-equilibrium proper-
ties. Energy landscapes provide a simple conceptual frame-
work for modeling these systems but in fact their use goes
much beyond that. For instance, the vacua of string theories
are expected to proliferate enormously, and the problem of
estimating the number of local minima �2,3� of string energy
landscapes is still an open problem. Other examples include
rugged �random� energy landscapes in evolutionary biology
�4�, quantum cosmology �5�, manifolds in random media �6�,
glassy systems �1,7�, random potentials �8,9�, and the asso-
ciated problems in random matrix theory �3,10,11�. Typically
these systems consider a particle, a configuration of particles,
or even a manifold, subject to a random potential. One ex-
treme case for its visual simplicity is that of a point particle
in a random Gaussian potential; on the opposite extreme are
energy landscapes associated with the configuration of a
many body system. Examples in this last category include
�1� the p-spin glass model �12�, which in the limit of large p
reduces to the far simpler random energy model of Derrida
�13�; �2� atomic clusters �14� and other glassy systems with
no quenched disorder �15�; �3� random manifolds in random
media �6�.

For any landscape, it is desirable to know the statistical
properties of the minima �or more generally of the saddle
points�. A quantity frequently considered is the expected
number of minima as a function of their energy �9�. It may
also be of interest to consider how the set of minima are
organized topologically, e.g., whether the barrier tree �16� is
ultrametric. Our focus here is to better understand the statis-
tics of the total number of local minima in random energy
landscapes; our underlying space is a regular �Euclidean� lat-
tice on each site of which resides a random energy. Let M
denote the total number of local minima for given values of
the energies on each site. Evidently M is a random variable
as it varies from one realization of the landscape to another.
We are interested in the statistics of M as a function of the
number N of lattice sites. Similar questions were studied re-
cently in the context of random permutations �17,18�, ballis-
tic deposition �19�, and in simple models of glasses �20�. In
this paper, we provide a number of analytical results on the

distribution of the total number of local minima for random
energy landscapes on several lattices; the moments of M are
easily derived, so our focus concerns mainly the probability
of large deviations of M from its mean value, i.e., the prob-
abilities of atypical configurations. Furthermore, we ask what
is the probability of M being at its maximum, corresponding
to the limit where the minima are maximally packed on the
lattice.

The paper is organized as follows. In Sec. I we specify the
model and show that the statistical properties of the minima
are independent of the individual distribution of energies as
long as these energies are independent from site to site and
are drawn from a continuous distribution. In Sec. II we cover
some of the simplest properties of the statistics of M and
formulate the large-deviation principle. Then we derive the
closed form expression for the large-deviation function in the
case of the one-dimensional lattice in Sec. III. The focus of
the rest of the paper is the maximum packing problem. In
Sec. IV we determine the probability of maximum packings
for several solvable cases, namely, Cayley trees and a two-
leg ladder. The case of d-dimensional hypercubic lattices is
then treated by numerical computation in Sec. V. Finally,
these different results are discussed and some closing re-
marks are given.

I. THE MODEL

We start with a regular lattice; on each site i exists a
random energy Ei, drawn independently from site to site
from a common distribution ��E�. We assume ��E� is con-
tinuous and normalized to unity, i.e., �−�

� ��E�dE=1. For any
choice of the set of Ei’s we obtain an energy landscape, i.e.,
a topological space �defined through nearest neighbors on the
lattice� with an energy for each element. For a given realiza-
tion of the landscape, a site i is a local minimum if Ei�Ej
where j denotes any nearest neighbor sites of i. Hereafter we
shall denote by M the number of local minima on this land-
scape.

For any given realization of the landscape, one can for-
mally express M as

M = �
i=1

N

�
j/�ij	

��Ej − Ei� �1�

where the product runs over all nearest neighbors j of site i
and ��x� is the Heaviside theta function. We are interested in
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computing the probability distribution P�M ,N� of the total
number of local minima �or equivalently that of the
maxima�.

The first important observation is that the distribution
P�M ,N� is completely independent of the energy distribution
��E�. To see this, we formally express the distribution as

P�M,N� =
 ¯
 ��M − �
i=1

N

�
j

��Ej − Ei���
k=1

N

��Ek�dEk

�2�

where ��x� is the Dirac delta function. Next we make a
change of variable for each k,

xk = 

−�

Ek

��E�dE . �3�

Clearly xk is a monotonically increasing function of Ek.
Therefore, ��Ej −Ei�=��xj −xi�. Moreover, since ��E� is nor-
malized to unity, the variable x varies from 0 to 1 and so Eq.
�2� simply becomes

P�M,N� = 

0

1

dx1 ¯ 

0

1

dxN��M − �
i=1

N

�
j

��xj − xi�� .

�4�

We see that the energy distribution ��E� simply drops out
and P�M ,N�, for arbitrary ��E�, is universal and is the same
as when the “new” energy variable xi is drawn independently
from a uniform distribution over x� �0,1�. Thus, the model
is simplified: at each lattice site exists a random number xi
� �0,1� drawn independently from a uniform distribution.
We will refer to this model as the random minima model, for
which we want to compute the distribution P�M ,N� of the
total number of local minima.

Following the mapping to the uniform distribution, it fol-
lows that the random minima model is just the continuous
version of the permutation generated landscape recently
studied by Hivert et al. �19�. They considered a set of inte-
gers 1,2 ,3 , . . . ,N�. Each of the N! permutations of this set
defines a random energy landscape and they occur with equal
probability. Thus the energy at a site is now a discrete integer
drawn uniformly from the set �1,2 ,3 , . . . ,N� with equal
probability 1 /N. Thus the statistics of the minima in the per-
mutation generated landscape will be identical to that of the
random minima model.

II. GENERAL PROPERTIES OF THE DISTRIBUTION
OF M

The mean and the variance of M are relatively straight-
forward to compute on an arbitrary lattice since they depend
only on the local properties of the landscape. To see this, let
us define the variable

�i = �
j

��xj − xi� �5�

where j runs over the nearest neighbors of i and the xi’s are
independent random numbers in �0, 1� drawn from the uni-

form distribution. This �i is an indicator function which is 1
if site i is a local minimum and 0 otherwise. Then it follows
that

M = �
i=1

N

�i. �6�

Taking the average in Eq. �6� and using the translational
invariance of the lattice, it follows that

�M	
N

= ��
j/�ij	

��xj − xi�� = 

0

1

dxi�

xi

1

dxj�n

=
1

n + 1
�7�

where n is the number of nearest neighbors of any site, i.e.,
the coordination number of the lattice. This result also fol-
lows trivially from a combinatorial argument on the permu-
tation landscape: consider the site i with its n neighbors. The
number of ways one can arrange the integers on these �n
+1� sites with the restriction that i is a local minimum is n!
clearly. On the other hand, the total number of unrestricted
configurations is �n+1�! so the probability that the site i is a
minimum is simply n! / �n+1�!=1/ �n+1�.

The calculation of the variance takes a few more steps.
Squaring Eq. �6� and taking the average gives

�M2	 = �
i,j

��i� j	 . �8�

Note that the �i’s are correlated random variables but only
over a short range. The calculation of the correlation function
��i� j	 can therefore be performed by hand �it only involves
the calculation of simple integrals involving a maximum of
2n sites�. For example, in one dimension �1D�, one gets

�2 = �M2	 − �M	2 →
2

45
N as N → � . �9�

This result has been obtained in various contexts before,
such as in the calculation of the number of metastable states
in 1D Ising spin glass �21� and also in the context of the
occupation time of a non-Markovian sequence in 1D �22�.
Recently, the variance for the 2D square lattice was com-
puted in the permutation model by Hivert et al. �19�. For
large N, one gets

�2 =
13

225
N . �10�

In general, on any arbitrary lattice, for large N

�M	 = aN ,

�M2	 − �M	2 = bN , �11�

where a and b are lattice-dependent numbers that can be
computed either using integrals or by combinatorics in the
permutation model.

Near the mean �M	 and within a region �M − �M	�
=O��N�, the distribution P�M ,N� is expected to be a Gauss-
ian �19� with mean and variance given in Eq. �11�,
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P�M,N� �
1

�2	bN
exp�− �M − aN�2/2bN� . �12�

However, for M far from the mean, one would expect devia-
tions in P�M ,N� from the Gaussian form. In this paper, we
are interested in the probabilities of such large deviations,
i.e., we are interested in computing the probabilities of oc-
currences of configurations that are far from typical. On gen-
eral grounds, in the limit M→�, N→� but with their ratio
M /N fixed but arbitrary, one expects that P�M ,N� has the
form

P�M,N� � exp�− N
�M

N
�� �13�

where 
�y� is a large-deviation function. Now, on a given
lattice, M can take values from 0 to a maximal number
Mmax�N. The upper limit follows from the fact that, once a
site is a local minimum, none of its nearest neighbors can be
a local minimum. Thus there is a nearest neighbor exclusion
principle for the minima. This constraint indicates that one
cannot pack arbitrarily large number of minima on the lattice
and there is an upper bound on the number of minima. For
example, on a bipartite lattice, one can pack at most Mmax
=N /2 local minima, one at every alternate site. In particular,
on a square lattice the minima will be placed on a checker-
board pattern. Thus, in this case, the large-deviation function

�y� is defined for 0�y�ymax=1/2. On the other hand, on
a Cayley tree with � the number of branches and N sites, we
will see later that Mmax=�N / ��+1�; thus ymax=� / ��+1�.

As mentioned above, in the vicinity of its mean, i.e., for
�M − �M	�=O��N�, the distribution P�M ,N� is Gaussian as in
Eq. �12�. This indicates that the large-deviation function

�y� is quadratic near y=a,


�y� �
�y − a�2

2b
�14�

such that P�M ,N��exp�−N�y−a�2 /2b��exp�−�M
−aN�2 /2bN� has the required Gaussian form. However, far
from the mean, P�M ,N� will have non-Gaussian tails, indi-
cating a departure of 
�y� from the simple quadratic form. A
knowledge of the function 
�y� would then allow one to
compute the probabilities of occurrences of atypical configu-
rations, such as the probability of a configuration with the
lowest number of minima �e.g., M =1� or the ones with the
maximal number of minima �M =Mmax�.

A particular focus of this paper will be to compute the
probability of a maximally packed configuration, i.e., when
M =Mmax. It follows from the general form in Eq. �13� that
the probability of this maximal packing should decay expo-
nentially with the system size for large N,

P�Mmax,N� � exp�− N
�ymax�� � −N �15�

where =exp�
�ymax�� is a lattice-dependent constant. Of
course, this expression also gives the scaling of the fraction
of permutations which have Mmax local minima in the per-
mutation landscape. It is then natural to interpret ln  as the
entropy cost per site to achieve maximally packed minima.

We shall compute the constant  exactly for a number of
lattices. For the 1D chain, we will show that

 =
	

2
= 1.570 79 . . . . �16�

Note that this result appeared before in the context of meta-
stable states in 1D Ising spin glasses at zero temperature
�21�. Furthermore, the same �	 /2�−N decay also appeared as
the persistence probability of a 1D non-Markovian sequence
�22,23�. For the 1D case, one can also compute the full large-
deviation function 
�y� �see Sec. III�. Another lattice where
we can calculate  exactly is the Cayley tree with � branches
where we show that

 =
1

� + 1
B� 1

� + 1
,

1

� + 1
� �17�

where B�x ,y� is the Beta function. As expected, for �=1, it
reduces to the 1D result in Eq. �16�. As � increases,  in-
creases slowly, and as �→�, →2. A Cayley tree with an
infinite number of branches corresponds to a hypercubic lat-
tice in d dimensions in the d→� limit. Thus, based on these
two limiting results, one expects the constant  on any
d-dimensional lattice to satisfy the bounds

	/2 �  � 2. �18�

Our numerical simulations for 2�d�5 are consistent with
these bounds. We have also been able to compute  exactly
for a two-leg ladder where we show that

 = �9�2

8
�1/3

= 1.576 57. . . �19�

where �=1.866 35. . . is the smallest positive root of the
Bessel function J−1/3�z�=0. The result in Eq. �19� is, of
course, consistent with the general bounds in Eq. �18�.

We now consider these successive cases in detail.

III. EXACT LARGE-DEVIATION FUNCTION
IN ONE DIMENSION

In a 1D chain of size N, the distribution P�M ,N� of the
total number of local minima was computed exactly by Der-
rida and Gardner �21�, although they did not calculate the
large-deviation function 
�y� explicitly. However, from their
result for the generating function, it is easy to derive the
large-deviation function by a Legendre transform. For the
sake of completeness, we provide here a brief derivation of
the 1D result, albeit by a slightly different method.

It is useful to define the generating function or the parti-
tion function Z�z ,N�=�MP�M ,N�zM where z is the fugacity
or the weight associated with each minimum. For simplicity
we consider an open chain of size N and let xN=x be the
value of the random variable at the Nth site. To write a re-
cursion relation for the partition function, it is convenient to
define two restricted partition functions Z1�x ,z ,N� and
Z0�x ,z ,N� denoting, respectively, the partition functions con-
ditioned on the fact that the Nth site has value xN=x and that
it is, respectively, a local minimum �i.e., xN�xN−1� or a local
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maximum �xN�xN−1�. Note that since we are considering an
open chain, the last site �N� has only one neighbor to its left,
namely, the �N−1�th site. Knowing the restricted partition
functions, one can compute the full partition function from
the relation

Z�z,N� = 

0

1

dx�Z1�x,z,N� + Z0�x,z,N�� . �20�

The restricted partition functions satisfy a pair of simple
recursion relations

Z1�x,z,N� = z

x

1

Z0�y,z,N − 1�dy + 

x

1

Z1�y,z,N − 1�dy ,

�21�

Z0�x,z,N� = 

0

x

�Z0�y,z,N − 1� + Z1�y,z,N − 1��dy . �22�

These recursion relations can be easily understood by con-
sidering all possibilities when one adds a new site to the
chain. If the new site is a minimum, we need to attach a
factor z. On the other hand, if the �N−1�th site was a mini-
mum and it ceases to be a minimum after the addition of the
Nth site, we have to detach a factor z.

It follows from Eqs. �21� and �22� that the restricted par-
tition functions satisfy the boundary conditions Z1�x
=1,z ,N�=0 and Z0�x=0,z ,N�=0. For large N, one expects a
separation of variables between x and N of the form

Z1,0�x,z,N� � �−Nf1,0�x� �23�

where ��z� is a function of z only �but independent of x� and
the functions f1�x� and f0�x� satisfy the boundary conditions
f1�1�=0 and f0�0�=0. Substituting this ansatz in Eqs. �21�
and �22� and subsequently differentiating with respect to x,
we get a pair of differential equations

df1

dx
= − �f1�x� − z�f0�x� , �24�

df0

dx
= �f1�x� + �f0�x� . �25�

Diagonalizing the �2�2� matrix, one obtains the solutions

f1�x� = ae��1−zx + be−��1−zx, �26�

f0�x� = −
a

�1 − �1 − z�
e��1−zx −

b

�1 + �1 − z�
e−��1−zx,

�27�

where a and b are arbitrary constants. The two boundary
conditions f1�1�=0 and f0�0�=0 yield two relations between
a and b,

ae��1−z + be−��1−z = 0, �28�

a

�1 − �1 − z�
e��1−z +

b

�1 + �1 − z�
e−��1−z = 0. �29�

Eliminating a and b between Eqs. �28� and �29� determines
the eigenvalue ��z� exactly,

��z� =�
1

2�1 − z
ln�1 + �1 − z

1 − �1 − z
� for 0 � z � 1, �30�

1
�z − 1

tan−1��z − 1� for z � 1. �31�

Note that the function ��z� is analytic at z=1. The form in
Eq. �31� is just an analytical continuation of the form in Eq.
�30� for z�1.

Substituting the large N form of Z1 and Z0 in Eq. �20�, one
obtains the large-N behavior of the partition function,

Z�z,N� = �
M

P�M,N�zM � ���z��−N �32�

where ��z� is given in Eqs. �30� and �31�. Substituting the
anticipated form of P�M ,N��exp�−N
�M ,N�� in Eq. �32�
one gets

Z�z,N� = �
M

P�M,N�zM �
 dy exp�− N�
�y� − y ln z��

� ���z��−N. �33�

Taking the N→� limit in Eq. �33� gives

miny�
�y� − y ln z� = ln���z�� . �34�

Inverting via the Legendre transform finally gives the large-
deviation function


�y� = maxz�ln���z�� + y ln z� , �35�

where ��z� is given in Eqs. �30� and �31�. Note that deter-
mining 
�y� from Eq. �35� requires a knowledge of ��z� for
all z�0; thus we need both formulas of ��z� in Eqs. �30� and
�31�.

We have obtained 
�y� from Eq. �35� using MATH-

EMATICA and it is displayed in Fig. 1. Since the maximal
value of M in 1D is N /2, the allowed range of y is 0�y
�1/2. One can analytically obtain the form of 
�y� in the
three limiting cases y→0, y→1/3, and y→1/2. First let us
consider the limit y→0. To find 
�y� in this limit we need to
use the z→0 form of ��z� in Eq. �35�. As z→0, it is easy to
see from Eq. �30� that ��z�→ ln�4/z� /2. Substituting this be-
havior in Eq. �35� and subsequently maximizing the right-
hand side �RHS� of Eq. �35� we find that 
�y� diverges
logarithmically, 
�y�� ln�ln 2 / �ey��, as y→0. Next we con-
sider the y→1/3 limit. Note that the mean number of
minima �M	=N /3 in d=1 which follows from the general
result in Eq. �7�. Thus the y→1/3 limit corresponds to be-
havior of M near its mean and one expects a quadratic form
for 
�y� near y=1/3. Indeed this also follows from Eq. �35�.
The limit y→1/3 corresponds to using the z→1 behavior of
��z� in Eq. �35�. Substituting z=1+� in Eq. �31� and expand-
ing in powers of �, one gets ln���z��=−� /3+13�2 /90
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+O��3�. Substituting this result on the RHS of Eq. �35� and
maximizing, one gets the expected quadratic behavior 
�y�
�45�y−1/3�2 /4 near y→1/3. This is thus a special case in
1D of the general behavior in Eq. �14� with a=1/3 and b
=2/45. Finally, to derive the maximally packed limit y
→1/2, we need to use the z→� behavior of ��z� in Eq.
�35�. In this limit, it follows from Eq. �31� that ln���z��
→ ln�	 /2�−ln�z� /2−2z−1/2 /	. Using this form and maxi-
mizing the RHS of Eq. �35� we get 
�y�� ln�	 /2�+2�1/2
−y�ln�	�1/2−y� /e� as y→1/2. Thus, summarizing the three
limiting behaviors,


�y�

� �
ln�ln 2/�ey�� as y → 0,

45

4
�y − 1/3�2 as y → 1/3,

ln�	/2� + 2�1/2 − y�ln�	�1/2 − y�/e� as y → 1/2.
�

�36�

Note that, as one approaches the maximally packed limit y
→1/2, 
�ymax=1/2�=ln�	 /2�. Thus, it follows from Eq.
�15� that in 1D, for large N,

P�Mmax = N/2,N� � −N, with  = 	/2, �37�

the result declared in Eq. �16�.

IV. PROBABILITY OF THE MAXIMALLY PACKED
CONFIGURATION: SOLVABLE CASES

In this section, we focus only on the maximally packed
configuration �where the number of minima on the lattice is
maximal�. From the general large-deviation theory, we have
already argued that the probability of such a configuration
P�Mmax,N� is expected to decay exponentially with the sys-
tem size N as in Eq. �15�. The goal is to compute the non-
trivial constant . In the previous section, we have shown

that, in a 1D chain, =	 /2. In this section, we compute 
exactly in a few other solvable cases, notably for a Cayley
tree with � branches and also for a two-leg ladder in 2D.

A. Exact calculation of � on a Cayley tree

We consider a Cayley tree with � branches and n genera-
tions. We label the generations by l=1,2 , . . . ,n starting from
the leaf sites at the bottom �see Fig. 2�. The total number of
sites on the tree is

N = 1 + � + �2 + ¯ + �n−1 =
�n − 1

� − 1
. �38�

Note that in the limit �→1+, the tree reduces to a 1D chain
with N=n sites.

At each site of this tree resides a random number xi drawn
independently from the uniform distribution over �0, 1�. We
want to calculate the probability of the configuration with the
maximum possible number of local minima. Note that, if a
site is a local minimum, its neighbors cannot be local
minima. To find the maximally packed configuration, we
note that the number of sites at the bottom layer �l=1� in-
creases exponentially with n as �n−1. Thus, to achieve maxi-
mal packing, it is necessary to fill up the bottom layer �the
leaf sites� with local minima. Then the layer just above the
bottom layer �l=2� is devoid of local minima. The next layer
�l=3� can again be packed with local minima. Thus, the
maximally packed configuration is the one where alternate
layers are fully packed with minima, starting with a fully
packed layer at the bottom, as shown in Fig. 2. The total
number of minima Mmax in this maximally packed configu-
ration depends on whether the number of generations n is
even or odd,

Mmax = �
�n+1 − 1

�2 − 1
, even n , �39�

�n+1 − �

�2 − 1
, odd n . �40�

For n even, the root is not a minimum, whereas for n odd, the
root is a minimum. In either case, for n large, the total num-
ber of minima in the maximally packed configuration is pro-
portional to the total number of sites N,

FIG. 1. The large deviation function 
�y� for 0�y�1/2 in 1D
obtained from Eq. �35� using MATHEMATICA.

FIG. 2. The maximally packed configuration of local minima
�denoted by black dots� on a Cayley tree with �=2 branches and
n=4 generations. The layers are labeled l=1,2. . . starting with the
bottom layer.
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Mmax �
�

� + 1
N . �41�

Having identified the maximally packed configuration, we
will next compute the probability of its occurrence and show
that for large N

P�Mmax,N� � −N where  =
1

� + 1
B� 1

� + 1
,

1

� + 1
� .

�42�

For simplicity, let us assume that n is even. One can per-
form an identical calculation when n is odd. For n even, all
the even layers �labeled by l=2m with m=1,2 , . . . ,n /2� are
devoid of local minima whereas all the odd layers �labeled
by l=2m−1 with m=1,2 , . . . ,n /2� are fully packed with lo-
cal minima. Our aim is to write a recursion relation. For this,
it is convenient to define two probabilities P2m�x� and
Q2m−1�x� defined, respectively, for even and odd layers. We
define P2m�x� as the probability that a subtree of 2m genera-
tions �counted from the bottom of the tree� has a random
variable x at its root and that x is not a local minimum. On
the other hand, Q2m−1�x� is the probability that a subtree of
�2m−1� generations �again counted from the bottom of the
tree� has a random variable x at its root and that x is a local
minimum. It is then easy to see that they satisfy the recursion
relations

P2m�x� = �

0

x

Q2m−1�y�dy��

, �43�

Q2m+1�x� = �

x

1

P2m�y�dy��

, �44�

where m=1,2 , . . . ,n /2. The recursions start with the initial
condition Q1�x�=1. Since n is even, the root of the full tree
with n generations is not a local minimum and hence the
probability of the full tree is just Pn�x� given that the value at
the root is x. The probability of the maximally packed con-
figuration is then obtained by integrating over x at the root,

P�Mmax,N� = 

0

1

Pn�x�dx . �45�

Thus, we need to solve Eqs. �43� and �44� and then substitute
the solution for Pn�x� in Eq. �45� to calculate P�Mmax,N�.

To solve the nonlinear recursion relations, it is convenient
to define p2m�x�= �P2m�x��1/� and q2m+1�x�= �Q2m+1�x��1/�.
Then the recursions in Eqs. �43� and �44� become

p2m�x� = 

0

x

q2m−1
� �y�dy , �46�

q2m+1�x� = 

x

1

p2m
� �y�dy , �47�

starting with q1�x�=1 for 0�x�1. It follows from Eqs. �46�
and �47� that they satisfy the boundary conditions p2m�0�
=0 and q2m+1�1�=0 for all m�1. However, p2m�1� and

q2m+1�0� are nonzero. It is then useful to define the ratios
f2m�x�= p2m�x� / p2m�1� and g2m+1�x�=q2m+1�x� /q2m+1�0� so
that f2m�1�=1, f2m�0�=0 and g2m+1�0�=1, g2m+1�1�=0. In
terms of the new functions, the recursions become

f2m�x� =
q2m−1

� �0�
p2m�1� 
0

x

g2m−1
� �y�dy , �48�

g2m+1�x� =
p2m

� �1�
q2m+1�0�
x

1

f2m
� �y�dy , �49�

starting with g1�x�=1 for 0�x�1. As m increases, we ex-
pect that the ratio functions f2m�x� and g2m+1�x� will ap-
proach their respective m-independent fixed point forms f�x�
and g�x�. This means that as m→�, q2m−1

� �0� / p2m�1�→�1,
and p2m

� �1� /q2m+1�0�→�2 and

f�x� = �1

0

x

g��y�dy , �50�

g�x� = �2

x

1

f��y�dy , �51�

with the boundary conditions f�0�=0, f�1�=1 and g�0�=1,
g�1�=0. These boundary conditions will determine the ei-
genvalues �1 and �2.

Differentiating Eqs. �50� and �51� with respect to x gives

df

dx
= �1g��x� , �52�

dg

dx
= − �2f��x� . �53�

Multiplying �52� by �2f��x� and �53� by �1g��x�, adding, and
then integrating, we find a conserved quantity

�2f�+1�x� + �1g�+1�x� = C �54�

where C is a constant independent of x. Putting x=0,1 and
using the respective boundary conditions gives C=�1=�2.
Thus, �1=�2=� and

f�+1�x� + g�+1�x� = 1. �55�

The common eigenvalue � is yet to be determined. Eliminat-
ing g�x� between Eqs. �52� and �55� gives

df

dx
= ��1 − f�+1�x���/��+1� �56�

subject to the boundary conditions f�0�=0 and f�1�=1. Inte-
grating and using f�0�=0 we get



0

f�x� dz

�1 − z�+1��/��+1� = �x . �57�

Using the other boundary condition f�1�=1 determines �
explicitly,
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� =
1

� + 1
B� 1

� + 1
,

1

� + 1
� , �58�

where B�m ,n�=�0
1xm−1�1−x�n−1dx is the standard Beta func-

tion. The eigenfunction f�x� in Eq. �57� can be expressed as
the solution of the equation

f�x�F� 1

� + 1
,

�

� + 1
,
� + 2

� + 1
, f�+1�x�� =

x

� + 1
B� 1

� + 1
,

1

� + 1
�

�59�

where F�a ,b ,c ,z� is the hypergeometric function. The other
eigenfunction g�x� follows from Eq. �55�, or simply from the
symmetry g�x�= f�1−x�. To check that the solutions to the
original recursion relations �46� and �47� indeed converge to
these fixed solutions, we have numerically solved Eqs. �46�
and �47� for �=2. We find that the numerical solutions �the
ratio functions f2m�x� and g2m+1�x�� converge to fixed point
functions rather quickly after about three or four iterations.
In Fig. 3, we compare the numerical fixed point solution �the
solution after ten iterations� f�x� with the analytical solution
in Eq. �59� with �=2. The agreement is perfect.

To determine , we use Eq. �45� and the recursion relation
�47�, which show that

P�Mmax,N� = 

0

1

Pn�x�dx = qn+1�0� . �60�

Then we take ratios to extract the bulk contribution of the
Cayley tree, thereby removing artifacts coming from its sur-
face �24�: as m→�, we have q2m−1

� �0� / p2m�1�→� and

p2m
� �1� /q2m+1�0�→�. Eliminating p2m�1� gives a recursion

for large m,

q2m+1�0� =
1

��+1q2m−1
�2

�0� . �61�

Iterating it, we obtain, for large m, q2m+1�0���−��2m−1�/��−1�.
Substituting this result in Eq. �60� and using N= ��n

−1� / ��−1� gives our final result for large N:

P�Mmax,N� � −N with  = � =
1

� + 1
B� 1

� + 1
,

1

� + 1
� .

�62�

Note that the recursion relation �61� is valid only for large
m. But in deriving the results above we have assumed that it
holds even for small m. Even though the asymptotic result is
not expected to change due to this “initial condition” effect,
one can avoid this “surface effect” by appropriately defining
 as the ratio

1


= lim

n→�



0

1 �

x

1

Pn�y�dy��

dx

�

0

1

Pn�x�dx�� . �63�

This definition follows from the following observation. The
numerator on the RHS of �63� denotes the probability of a
maximally packed configuration on a tree with �n+1� gen-
erations. The denominator is the joint probability that the
disconnected � subtrees of n generations are all maximally
packed. Thus, the ratio on the RHS is just the factor by
which the probability of a maximally packed configuration
per site decreases when one fuses the � number of
n-generation trees and one additional root to construct a
newly maximally packed configuration on an
�n+1�-generation tree. But, asymptotically for large n, this is
precisely 1/ by the orginal definition in Eq. �15�. Physi-
cally, ln  is the additional entropy change when packing an
extra minimum in the tree. Using the recursion relations �43�
and �44�, in Eq. �63� one gets

1


= lim

n→�



0

1 � qn+1�x�
qn+1�0���

dx = 

0

1

gn+1
� �x�dx . �64�

Substituting g��x�= �1/��df /dx, integrating, and using f�1�
=1, we get

 = � =
1

� + 1
B� 1

� + 1
,

1

� + 1
� . �65�

Note that, for �=1, we recover the 1D result, =	 /2. For
�=2, we get =B�1/3 ,1 /3� /3=1.766 64. . .. As �→�, 
converges slowly to =2. Since the �→� result should co-
incide with that on a hypercubic lattice in the infinite dimen-
sion limit, we expect that for hypercubic lattices in d dimen-
sions  is bounded, 	 /2��2. As d increases from 1 to �,
 should increase monotonically from its d=1 value 	 /2

FIG. 3. �Color online� The numerically obtained fixed point
function f�x� after ten iterations, for �=2, is compared to the ana-
lytical scaling function in Eq. �59� obtained using MATHEMATICA.
The two curves are difficult to distinguish, indicating perfect
agreement.
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=1.560 79. . . to 2. Our numerical solutions on d-dimensional
hypercubic lattices with d=2,3 ,4 ,5 are consistent with these
bounds.

B. Maximally packed configuration on a bipartite lattice:
An equivalent plaquette model

On a bipartite lattice, the maximally packed configuration
is the one where one places a local minimum at every alter-
nate site. For example, on a square lattice, a maximally
packed configuration has a checkerboard pattern as shown in
Fig. 4. Let us first focus on the neighborhood of a single
local minimum. The sites at the corners of the plaquette con-
taining this minimum are clearly not local minima. Let x1, x2,
x3, and x4 denote the values of the random variables at the
four corners of the plaquette. Then, given these four values,
the probability that the site at the center of the plaquette is a
local minimum is clearly

pi�x1,x2,x3,x4� = min�x1,x2,x3,x4� �66�

where we have used the fact that the random variable at the
center of the plaquette is drawn from a uniform distribution.
So the probability of the full checkerboard configuration
where every alternate site is a local minimum, given the
values of the random variables xi�s at the sites of the other
sublattice, is obtained by multiplying all the plaquettes,

Prob�Mmax,N�xi�� = �
plaquette j

min„x1�j�,x2�j�,x3�j�,x4�j�…

�67�

where the plaquettes are labeled by j and x1�j�, x2�j�, x3�j�,
and x4�j� are the four random variables at the corners of the
jth plaquette. The total number of plaquettes will also be
denoted by M since the number of plaquettes is the same as
the number of local minima. To simplify, it is convenient to
rotate the lattice by −45° �as shown in Fig. 4�.

We then have a plaquette model where at each corner of a
plaquette exists a random variable xi drawn from a uniform
distribution over �0, 1�, and we are interested in calculating
the product in Eq. �67�. Finally, the probability of the maxi-
mally packed configuration on the original lattice is obtained
by averaging over the xi’s with uniform distribution in �0, 1�,

P�Mmax,N� = � �
plaquette j

min„x1�j�,x2�j�,x3�j�,x4�j�…�
�68�

where the angular brackets simply indicate integration over
all the x variables from 0 to 1. Note that this plaquette model
is very general and can be extended to any bipartite lattice.
Also, the right-hand side of Eq. �68� is actually the probabil-
ity of just one of the two checkerboard configurations, so the
true P�Mmax,N� is actually twice this amount, but to avoid
unnecessary complications we shall keep to this notation.

1. Plaquette model in one dimension

As a simple example, for a 1D chain, one can reproduce
the result =	 /2 quite easily using the plaquette representa-
tion. The number of plaquettes is clearly M =N /2. In this
case, Eq. �68� gives

P�Mmax,N� =� �
i=1

M=N/2

min�xi,xi+1�� �69�

where i runs over every alternate site of the original 1D
chain. The quantity on the RHS of �69� can be evaluated
using a simple transfer matrix approach. Defining a transfer

matrix via �xi�T̂�xi+1	=min�xi ,xi+1�, we have from Eq. �69�,
assuming a closed periodic chain,

P�Mmax,N� = Tr�T̂M� �70�

where Tr is the trace. The eigenvalue equation of the transfer
matrix is



0

1

min�x,y���y�dy = ���x� �71�

where ��x� is an eigenfunction with eigenvalue �. Dividing
the range of integration into �0,x� and �x ,1� and differenti-
ating twice, one gets

�
d2�

dx2 + ��x� = 0 �72�

with the boundary conditions ��x=0�=0 and ���x=1�=0
where ���x�=d� /dx. The solution is simply ��x�
=A sin�x /��� where

� =
4

	2�2m + 1�2 , m = 0,1,2 . . . . �73�

The largest eigenvalue is �=4/	2 corresponding to m=0.
Thus for large M =N /2, one gets from Eq. �70�

P�Mmax,N� � � 4

	2�N/2

� �	/2�−N, �74�

reproducing the results obtained in the previous section.

2. Plaquette model on a two-leg ladder

Another nontrivial solvable case of the plaquette model is
on a two-leg ladder shown in Fig. 5. It can be thought of as

FIG. 4. A maximally packed configuration on a square lattice.
On this checkerboard pattern, the black circles denote the locations
of the local minimum. The corners of every plaquette around a
minimum cannot contain a minimum and are shown by empty
circles. On the right, the same pattern, rotated by an angle −45°.
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the first layer of the full 2D model shown on the right in Fig.
4. At the center of each plaquette there is a local minimum.
Let M be the number of plaquettes. Then the total number of
sites in the lattice �counting the minima at the centers� is N
=3M.

The probability of the maximally packed configuration in
Eq. �67� can again be computed by defining the transfer ma-

trix �x1 ,x2�T̂�x3 ,x4	=min�x1 ,x2 ,x3 ,x4� where �x1 ,x2� refers
to the two corners on the left of a plaquette and �x3 ,x4� refers
to the two corners on the right of a plaquette. Then,

P�Mmax,N� = Tr�T̂M� . �75�

The corresponding eigenvalue equation is now two dimen-
sional,



0

1

dx3

0

1

dx4 min�x1,x2,x3,x4���x3,x4� = ���x1,x2�

�76�

which is considerably harder to solve compared to the 1D
case. While one can solve the 2D eigenvalue equation di-
rectly, it is somewhat easier to first reduce it to an equivalent
1D eigenvalue problem by using the following trick.

Let us first define the random variable zi
=min(x1�i� ,x2�i� ,x3�i� ,x4�i�) at the center of each plaquette
i. Clearly

P�Mmax,N� = �z1z2 ¯ zM	 �77�

where M =N /3 is the number of plaquettes. The random
variables zi are obviously correlated as two adjacent
plaquettes will share two common random variables as
shown in Fig. 6.

To evaluate the average on the RHS of Eq. �77� we need
to know the joint distribution of the zi’s, which are correlated
�see Fig. 6�. This joint distribution can be explicitly com-
puted. To see this, let us first compute the cumulative distri-

bution of one single z variable, say z1
=min(x1�1� ,x2�1� ,x3�1� ,x4�1�). For simplicity, we denote
x1�1�=x1, x2�1�=x2, etc. �see Fig. 6�. Evidently

Prob�z1 � y� = Prob„min�x1,x2,x3,x4� � y… = �1 − y�4

�78�

where we have used the fact that x1, x2, x3, and x4 are all
independent random variables drawn from the uniform dis-
tribution over �0, 1�. Next, let us consider the joint distribu-
tion of two consecutive z’s, say z1 and z2. Let us denote the
random variables at the corners by x1, x2, x3, x4, x5, and x6 as
shown in Fig. 6. Then it is easy to see that

Prob�z1 � y1,z2 � y2� = Prob„min�x1,x2,x3,x4�

� y1,min�x3,x4,x5,x6� � y2…

= �1 − y1�2�1 − max�y1,y2��2�1 − y2�2.

�79�

In a similar way, one can construct the joint distribution of
three adjacent plaquette minima,

Prob�z1 � y1,z2 � y2,z3 � y3� = �1 − y1�2�1 − max�y1,y2��2�1

− max�y2,y3��2�1 − y3�2. �80�

One can repeat the process above for a higher number of
adjacent plaquettes and one immediately sees the pattern for
the full ladder. Let us denote

F�y1,y2,y3, . . . ,yM� = Prob�z1 � y1,z2 � y2,z3 � y3, . . . ,zM

� yM� . �81�

Then, for a ladder with open ends, we get

F�y1,y2,y3, . . . ,yM�

= �1 − y1�2��
i=2

M

�1 − max�yi−1,yi��2��1 − yM�2. �82�

For a ladder with closed �periodic� ends, this is even simpler,

F�y1,y2,y3, . . . ,yM� = �
i=1

M

�1 − max�yi−1,yi��2, �83�

where one identifies y0=yM.
Once we have the joint distribution, it is easy to rewrite

the average on the RHS of Eq. �77� in terms of the joint
distribution

P�Mmax,N� = �z1z2 ¯ zM	

= 

0

1

¯ 

0

1

dy1dy2 ¯ dyMF�y1,y2,y3, . . . ,yM� .

�84�

The latter identity can be easily derived using integration by
parts. Let us, for simplicity, consider a plaquette with closed
ends. Then, substituting the joint distribution from Eq. �83�
into Eq. �84�, we now have a one-dimensional multiple inte-
gral to perform:

FIG. 5. The plaquette model on a two-leg ladder. At the center
of each plaquette there is a local minimum shown by the black
circles.

FIG. 6. On the left we have a single plaquette with the minimum
z1=min�x1 ,x2 ,x3 ,x4� at the center. On the right we have two adja-
cent plaquettes with minima z1=min�x1 ,x2 ,x3 ,x4� and z2

=min�x3 ,x4 ,x5 ,x6� at their respective centers. The variables z1 and
z2 are corrrelated as they share a common bond with the two ele-
ments x3 and x4.
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P�Mmax,N� = 

0

1

¯ 

0

1

dy1dy2 ¯ dyM

��
i=1

M

�1 − max�yi−1,yi��2. �85�

Using the identity 1−max�y1 ,y2�=min�1−y1 ,1−y2� and
making a change of variable xi=1−yi, the integral in Eq. �85�
simplifies further:

P�Mmax,N� = 

0

1

¯ 

0

1

dx1dx2 ¯ dxM�
i=1

M

�min2�xi−1,xi�� .

�86�

This one-dimensional integral can now be performed by a
transfer matrix technique which operates in one dimension.

Defining �xi−1�T̂�xi	=min2�xi−1 ,xi� we get P�Mmax,N�
=Tr�T̂M� and the eigenvalue equation is given by



0

1

min2�x,y���y�dy = ���x� . �87�

Thus we have managed to reduce a two-dimensional eigen-
value problem in Eq. �76� to an equivalent but much simpler
1D eigenvalue problem in Eq. �87�, which can then be solved
exactly.

To proceed, we first divide the range of integration in Eq.
�87� into �0,x� and �x ,1�. Next we differentiate once to get

�
d�

dx
= 2x


x

1

��y�dy . �88�

Note the boundary conditions that emerge from Eqs. �87� and
�88�: ��x=0�=0 and ���x=0�=0. But in addition one also
has to satisfy ���x=1�=0. Dividing Eq. �88� by x and differ-
entiating once more we get an ordinary second-order differ-
ential equation

���x� −
1

x
���x� +

2x

�
��x� = 0 �89�

with the boundary conditions ��x=0�=0, ���x=0�=0, and
���x=1�=0. The general solution to this equation, after a
few changes of variables, can fortunately be obtained explic-
itly as a linear combination of two independent Bessel func-
tions. The boundary condition ��0�=0 rules one of them out.
Then, the most general solution satisfying ��0�=0 can be
written as

��x� = AxJ2/3��8x3

9�
� �90�

where J��x� is the ordinary Bessel function with index � �25�
and A is an arbitrary amplitude. Note that the other boundary
condition at x=0, namely, ���0�=0, is automatically satisfied
by the solution in Eq. �90�. This can be seen by using the
small-x expansion of J��x��x� which indicates ��x��x2 as
x→0. Hence ���0�=0.

To determine the eigenvalue �, we have to use the other
nontrivial boundary condition at x=1, namely, ���x=1�=0.
This condition, substituted in Eq. �90�, gives us an implicit
equation for � that looks a bit complicated:

2

3
J2/3�� 8

9�
� +� 8

9�
J2/3� �� 8

9�
� = 0. �91�

However, a nice simplification occurs when one uses the
identity �25� xJ���x�+�J��x�=xJ�−1�x�. Then Eq. �91� simply
gives

J−1/3�� 8

9�
� = 0. �92�

The Bessel function oscillates on the positive axis of its ar-
gument, so each of its zeros �roots� would give an eigenvalue
�. However, for large M, we are interested only in the largest
eigenvalue, which is then given by

� =
8

9�2 �93�

where � is smallest positive root of J−1/3�x�=0. The root � is
known �26�, �=1.866 35. . ..

Using P�Mmax,N�=Tr�T̂M���M for large M and using
M =N /3, we finally get the exact result for the two-leg lad-
der,

P�Mmax,N� � −N where  = �9�2

8
�1/3

= 1.576 57 . . . .

�94�

When compared with the 1D result, =	 /2=1.570 79. . ., we
see that  changes by a very small amount as one goes from
a chain to a ladder. It would be interesting to see if one can
extend these calculations to ladders with more than two legs
�27� and eventually to the full two-dimensional lattice.

V. NUMERICAL RESULTS FOR MAXIMALLY PACKED
d-DIMENSIONAL LATTICES

Now we consider the dependence of  on dimension. For
simplicity, we have focused on d-dimensional hypercubic
lattices as these lattices are simple to parametrize and are
bipartite, allowing us to use the d-dimensional analog of the
framework described in Sec. IV B. Our approach will be
computational: we numerically estimate P�Mmax,N� from an
integral representation for lattices of increasing size and then
try to extract the limit of large sizes. To avoid boundary
effects which slow down the convergence to this limit, we
have used Ld lattices having periodic boundary conditions in
all directions.

The integral in Eq. �68� is based on decomposing the
lattice into even and odd sites and imposing the local minima
to be say on the even sites. Its generalization to d dimensions
involves all the neighbors of a given even site j, the corre-
sponding “star” set of 2d odd sites playing the role the
plaquette had for the square lattice:
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P�Mmax,N� = ��
starj

min„x1�j�,x2�j�, . . . ,x2d�j�…� . �95�

Here the average is over all values of the random variables
belonging to stars; these are uniform identical independently
distributed �i.i.d.� in �0, 1�. Furthermore, as before, we ne-
glect the factor 2 in P�Mmax,N� coming from the fact that the
minima could have been taken to be on the odd sites. The
difficulty in computing these integrals is their high dimen-
sionality. In Monte Carlo calculations as used in most statis-
tical physics applications, it is straightforward to use impor-
tance sampling methods �e.g., the METROPOLIS algorithm� to
get expectation values of observables; unfortunately here, the
quantity to compute is the analog of the free energy and it is
not directly accessible via such methods. We have thus used
a different approach that is of the “variance reduction” type.
It can be motivated as follows. In Eq. �95� we are to get the
mean value of the integrand, sampling the random variables
xi uniformly. It is quite easy to see that the signal-to-noise
ratio goes to zero exponentially with the number of lattice
sites; to counteract this, we sample the xi with a different
density and then correct for this biased sampling. For this to
be practical, we keep the xi as i.i.d. variables, but optimize
their individual distribution so as to maximize the signal-to-
noise ratio. Let ��x� be the probability density used for sam-
pling the xi. For any such distribution,

P�Mmax,N� =� �
star j

min„x1�j�,x2�j�, . . . ,x2d�j�…
��„x1�j�…�„x2�j�… ¯ �„x2d�j�…�1/2d�

�

.

�96�

The denominator corrects for the modified measure of the
random variables, taking into account the fact that each odd
site appears in 2d stars. If � is well chosen, the numerator
and denominator of the integrand will fluctuate together so
that their ratio has a reduced variance. For our purposes, we
parametrized � as follows:

��x� = �Ax�, x � x*,

B , x � x*,
� �97�

where � and x* are arbitrary parameters while A and B are
set so that � is continuous and is a normalized probability
density. For each dimension, we adjust � and x* to minimize
the variance of the integrand; the signal-to-noise ratio still
decreases exponentially with the number of lattice sites, but
with a smaller exponent. The motivation for this functional
form is simple: the odd sites, all of which are maxima, have
an a posteriori distribution that is strongly suppressed at low
values of the random variable.

One last obstacle comes from the fact that the integrand
typically takes on small values when one takes large lattices;
this is expected, of course, since the integral itself is becom-
ing exponentially small. To keep track of values that are
smaller than what can be represented by the machine coding,
�we used 96-bit representations of real numbers�, we shifted
multiplicatively each star term in the integrand and corrected
for this shift when computing ln�P�Mmax,N��. The set of

these procedures then gave us values of ln�P�Mmax,N�� /N
with measurable statistical errors for a range of N=Ld from
which we extrapolated to the large N limit.

In practice, we find that this strategy works very well in
low dimensions. For instance, in dimension d=1, we still
have a very good precision for L=30 sites, and the large L
limit can be very reliably extracted, giving  to better than
five significant figures. �Of course, since the exact value is
known at d=1, this really only serves as a check of our
procedures.� In dimension d=2, the method gives better than
four significant figures for L�16. Our estimates of �N�
= P�Mmax,N�−1/N as a function of 1/L=1/�N are shown in
Fig. 7. The convergence to the L=� limit seems to follow a
1/L law, a property we also find for the higher dimensions
investigated. Here we see that �N� converges rapidly to a
value close to 1.658. Unfortunately the signal-to-noise ratio
decreases with L and with dimension; furthermore the acces-
sible range of L decreases fast as d increases; because of this,
we are able to extract  reliably only for dimensions up to
d=5. Our results are summarized in Table I where the error
estimates come from both statistical noise and uncertainties
in the large-L extrapolation.

VI. DISCUSSION AND CONCLUSIONS

We have been concerned with the statistical properties of
M, the number of local minima in a random energy land-
scape. The low-order moments of M can easily be obtained;
higher-order moments could be computed by automated

FIG. 7. The convergence to the large L limit of the estimates of
�N� for the square lattice, N=L2.

TABLE I. The numerical estimates of  for d-dimensional hy-
percubic lattices �hypercube�; error estimates come from statistical
fluctuations and uncertainties in the large lattice size extrapolation.
Bottom line: exact values for the Cayley tree with the same coor-
dination number �+1=2d.

d=1 d=2 d=3 d=4 d=5

hypercube 1.57082�6� 1.6577�6� 1.7152�10� 1.761�5� 1.806�10�
Cayley 1.570796 1.854075 1.927621 1.956922 1.971464
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counting of graphs. The atypical values of M follow a large-
deviation principle as given in Eq. �13�; we have been able to
compute this function 
�y� in one dimension analytically; it
diverges as y→0 and goes to a finite limit when M reaches
its maximum value where one-half of the lattice sites are
local minima. This then led us to consider the limit of maxi-
mum packing �M takes on its largest possible value� for more
general lattices. We focused on bipartite lattices where up to
half of the sites can be local minima. We derived analytically
the probability of this maximum packing P�Mmax,N� for the
Cayley tree and for a two-leg ladder. We then tackled
d-dimensional hypercubic lattices by computational tech-
niques. For all these lattices, it is easy to see that
P�Mmax,N��2−N simply by forcing the xi on the even �odd�
sites to be less �greater� than 1/2; this immediately leads to
�d��2 for all dimensions. Furthermore, when d becomes
large, it will be very rare to have maximum packing if the xi
do not very nearly satisfy this even-odd pattern so one ex-
pects �d� to tend toward 2 in the large-d limit.

Given this large-d limit, it is natural to ask how =2 is
approached. In Fig. 8 we show that the Cayley tree case
follows a very clear power correction law which can be de-
rived analytically as being 1/d2. The case of the
d-dimensional lattice is less clear but is compatible with a
1/d law.

The Cayley tree thus provides an approximation to the
hypercubic case but not a very accurate one; this is probably
because the nature of the correlations from site to site of the
xi �given that one has a maximally packed configuration� are
quite different when considering the tree rather than the hy-
percube.

Our work can be extended in several ways. �i� We com-
puted the exact large-deviation function in one dimension,
but this function can also be determined for the Cayley tree
�28�. �ii� One can also introduce a chemical potential z for
each minimum and consider the thermodynamics of minima
as a function of z; recent numerical results by Derrida in 2D
�29� indicate the presence of a phase transition with z. �iii�
Our variables xi were i.i.d. random variables; does a large-
deviation principle still hold if these variables have short-

range correlations? One expects so. �iv� How do all these
statistical properties generalize if one asks for minima within
a given energy range? Finally, it would also be of interest to
understand the similarities and differences between the sta-
tistics of local minima in continuous random energy land-
scapes �8,9,30� and in lattice models as presented here; the
energies could be random or correlated as in the Sinai prob-
lem.
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